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A spatially one dimensional coupled map lattice with a local and unidirectional
coupling is introduced. This model is studied analytically by a perturbation
theory that is valid for small coupling strength. In parameter space three phases
with different ergodic behaviour are observed. Via coarse graining the determi-
nistic model is mapped to a stochastic spin model that can be described by a
master equation. Because of the anisotropic coupling non-equilibrium behaviour
is found on the coarse grained level. However, the stationary statistical proper-
ties of the spin dynamics can still be described with a nearest neighbour Ising
model whereby the ordering is predominantly antiferromagnetic.
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phase transition.

1. INTRODUCTION

Non-equilibrium physics in general and transport phenomena in particular
are one of the most challenging fields in modern theoretical physics.
Unfortunately, there does not exist a general framework for the investiga-
tion of non-equilibrium features. Thus, in the whole subject a variety of
methods is discussed, ranging from full scale microscopic equations of
motion, driven master equations, stochastic models, hydrodynamic descrip-
tions, cellular automata and coupled map lattices (see, e.g., refs. 1–3).



A certain boost was caused by developments in nonlinear dynamics, in par-
ticular by the understanding of chaotic motion. Thus, an overlap between
dynamical systems theory and statistical mechanics has occurred even from
the physics point of view.

Coupled map lattices (CMLs) have been introduced as a widely
studied model class for spatio-temporal chaos (4, 5) at the end of the eighties.
In such models local chaos is generated by a chaotic map that is placed on
each site of a simple lattice. Spatial aspects are introduced by coupling
these local units, and special emphasis is on the limit of large lattice size
where the dynamics becomes high dimensional. The application of methods
that were developed in the context of equilibrium statistical physics have
proven to be fruitful for the study of high dimensional chaos in CMLs. In
particular coarse graining is a common tool. In rigorous approaches coarse
graining is performed by suitable partitions of the phase space and there
are results for particular coupled map lattices available (cf. refs. 6 and 7).
Unfortunately, so far such rigorous schemes are limited to the perturbative
regime of hyperbolic CMLs and are technically extremely difficult to apply.

It is an important question from a theoretical point of view whether a
coupled map lattice finally leads to an equilibrium or a non-equilibrium
statistical mechanics, i.e., whether the condition of detailed balance holds.
In a recent publication the authors investigated the relation between CMLs
and spin models by means of an analytical perturbation theory. (8) In this
CML the coupling of a lattice site to its two neighbours was symmetric,
and equilibrium behaviour was found for the spin dynamics. In this article
we establish a similar link between a deterministic CML dynamics and a
stochastic spin dynamics for a strongly asymmetric coupling.

We should mention that the main focus of the present contribution is
on principal aspects of dynamics in spatially extended systems. There does
not exist a deep relation between coupled map lattices and real experiments
on a quantitative basis. However, we expect that some features of our
model are typical and can even be observed in experiments. Transport
properties subjected to strong external fields, i.e., transport under strong
nonequilibrium conditions, is already one of the meanwhile classical topics
in statistical mechanics (cf., e.g., ref. 2). Even beyond traditional fields of
physics such nonequilibrium phenomena become increasingly important.
Natural applications arise in a biochemical context, like, e.g., molecular
motors and the understanding of the associated transport phenomena. (9)

Whether models which deduce macroscopic net currents from the interplay
between nonequilibrium noise and asymmetric potentials, i.e., so called
ratchets, (10) really describe the underlying mechanisms seems to be still
under discussion. However, the situation shows, that even rough modelling
of key features may shed some light on experimentally relevant features.
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Thus in a wider perspective our model system may contribute to such fields
as well.

We now outline the organisation of the article. Section 2 introduces
the CML and its perturbative regime. In Section 3 results of the perturba-
tive treatment of the CML are presented, among them the bifurcation
scenario. The method of investigation is the same as the one used in ref. 8.
The coarse graining of the CML that gives rise to a corresponding
stochastic spin dynamics is carried through in Section 4. With the help of
these tools we study the ergodic properties in the various regions of the
bifurcation diagram in Section 5, both for the deterministic CML and the
corresponding spin dynamics. An order–disorder phase transition of anti-
ferromagnetic character is found. The non-equilibrium behaviour that
is present on the coarse grained level is studied in detail in Section 6. In
Section 7 we show how to cope with the case of very strong coupling.
Finally, the results of this article are summarised in Section 8. To keep the
technical details in the main part at a minimum, the article contains three
appendixes. These appendixes contain derivations of important results for
the CML and its stochastic description.

2. THE MODEL

The single site map fd of the CML is a deformed antisymmetric tent
map that is linear on three subintervals of [−1, 1] (cf. Fig. 1)

fd(x) :=˛
−2−x/a if x ¥ [−1, −a]

x/a if x ¥ (−a, a)

2−x/a if x ¥ [a, 1]

(1)

with a :=1/(2−d). The introduction of a in Eq. (1) ensures that the
modulus of the derivative of fd is constant on the whole interval. Since
fd(1)=d, the parameter d determines whether transitions between the
intervals J(−1) :=[−1, 0] and J(+1) :=[0, 1] are possible. Figure 1

Fig. 1. The deformed antisymmetric tent map fd.
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shows the function fd for small positive and negative d. At d=0 the map
fd undergoes a symmetry breaking bifurcation, i.e., for d \ 0 the single site
map has two coexisting attractors, the intervals [−1, d] and [d, 1],
whereas for d < 0 only one attractor, the interval [−1, 1], is present. Later
we will identify the positive interval [0, 1] with spin+1, the negative
interval [−1, 0] with spin −1. The single site map fd has also been used in
ref. 8.

The CML that is studied in this article is defined on a one dimensional
lattice (chain) of length N. The coupling is unidirectional or one-way:
a lattice site i is coupled only to its right neighbour i+1

TE, d : [−1,+1]N Q [−1,+1]N,

x t+1i =[TE, d(x)]i :=(1− E) fd(x
t
i)+Efd(x

t
i+1), i=1, 2,..., N. (2)

The index t ¥N is the time index. The CML TE, d contains two parameters,
the coupling strength E and the deformation d of the single site map fd. The
coupling strength can be chosen between 0 and 1. We impose periodic
boundary conditions in the CML (x tN+1=x t1). Therefore, translation
invariance on the one dimensional lattice holds. Because of the single site
map fd and the form of the coupling in Eq. (2) the CML TE, d also has the
symmetry TE, d(−x)=−TE, d(x).

Our main interest in this article is the ergodic behaviour of the CML
TE, d. We would like to know how many and which attractors are present
for given parameters E, d. Unfortunately, our analytic approach is not
applicable for general parameters, but restricted to the regions of small and
large coupling, i.e., E° 1 and (1− E)° 1. We also assume a small defor-
mation |d|° 1. We will see that the ergodic behaviour of the CML already
is quite rich in these small subregions of parameter space. The case of very
large coupling (E % 1) will be dealt with in Section 7, so that we start with
considering the perturbative region E, |d|° 1.

In order to set up a perturbation theory, we first look at the CML
with E=d=0 that can be solved trivially. The non–deformed antisymme-
tric tent map fd=0 has the two attractors J(−1) :=[−1, 0] and J(+1) :=
[0, 1]. For N lattice sites there are 2N coexisting attractors, each one being
an N dimensional cube of edge length one

Ia :=J(a1)×J(a2)× · · · ×J(aN). (3)

We distinguish these cubes Ia by an N dimensional index vector a=
(a1, a2,..., aN) where ai ¥ {−1,+1}. These cubes will be important building
blocks of the perturbation theory and the starting point of a coarse grained
description of the CML TE, d.
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3. TRANSITIONS AND BIFURCATIONS

In this section we summarise the dynamics of the CML in the pertur-
bative regime (E, |d|° 1). First, we note that for a CML orbit {x t, t=
0, 1, 2,...} each coordinate x ti stays a rather long time in the interval
J(ai) ¥ {J(+1), J(−1)}, before it possibly enters the other interval J(−ai)
via a change of sign. Such a sign change will be called a transition in the
following. Here both the positive and negative values of the coordinate
should have a magnitude O(1), so that both intervals are really visited by
the CML coordinate.

Looking at all coordinates, we can characterise the CML dynamics by
successive changes of cube Ia Q Ib. For not too large lattices (N° 1/E) at
most one transition takes place per iteration step in the perturbative regime
of the CML. For large lattices simultaneous transitions at different sites
occur in the change of cube Ia Q Ib. However, the average distance between
the involved lattice sites is rather large.

In the perturbative regime any attractor of the CML TE, d is a union of
cubes Ia neglecting sets with volume O(E, d). An attractor is a minimal
union of cubes such that this union can not be left via a transition of a
coordinate x ti . Thus, the allowed transitions for given parameters E, d
determine the attractors of the CML for this choice of parameters.

In the spirit of perturbation theory we can confine ourselves to the
analysis of dominant transitions that we now define. In a dominant transi-
tion the two neighbouring coordinates x ti−1 and x ti+1 stay in their respective
interval, if the coordinate x ti changes its sign at time t0. Transitions in
which two or more neighbouring coordinates change sign at the same time
are suppressed in perturbation theory by an additional factor O(E, d).

The decisive simplification of perturbation theory for the unidirectio-
nal CML TE, d is that only the coordinate x ti itself and its neighbouring one
x ti+1 have to be considered for a transition. For, according to Eq. (2) the
CML couples only the neighbour coordinate x ti+1 to the coordinate x ti
during one iteration. In the perturbative regime the dominant influence of
the neighbour coordinate also persists for the finite amount of time that is
needed for a transition, since the influence of lattice sites further away is
suppressed by a factor of O(E2). Thus the remaining (N−2) coordinates
only play a spectator role for the transition. Therefore, one can study all
dominant transitions in a CML with only two lattice sites. A transition can
be denoted by aiai+1 Q −aiai+1. Because of the symmetries of the CML
TE, d we have two types of transitions:

Type (a): the two indices ai and ai+1 are equal,

+1+1Q −1+1 or −1−1Q+1−1. (4)
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Type (b): ai and ai+1 differ,

−1+1Q+1+1 or +1−1Q −1−1. (5)

For each transition type there is a critical value dcrit(E) such that for
fixed E a transition type becomes only possible, if the deformation param-
eter d is smaller than this critical value. We obtain for the critical values
dcrit(E)

type (a): da=0, type (b): db=−
4E
3
. (6)

The calculation of these critical values necessitates rather involved geome-
tric constructions in the reduced two dimensional phase space in which the
relevant dynamics for the transition takes place. Hence, these calculations
are deferred to Appendix A. As we are doing perturbation theory, we
expect corrections to the critical values in Eq. (6) of order O(E2).

Equation (6) determines the global bifurcations of the CML TE, d.
A bifurcation occurs, if a transition type becomes allowed or forbidden by
a change of parameters. This is the case, if for fixed coupling constant E the
deformation parameter d crosses a bifurcation line dcrit(E). The bifurcation
diagram of the CML in the perturbative regime is shown in Fig. 2. The two
bifurcation lines separate three regions with different ergodic behaviour.
The ergodic dynamics in the various regions will be discussed in Section 5,
after having introduced a coarse graining of the CML.

Fig. 2. Diagrammatic view of the bifurcation diagram for the unidirectional CML TE, d. The
three parameter regions of Section 5 are labeled by numbers. Gray shading indicates the type
of coupling in the corresponding kinetic Ising model, antiferromagnetic (light) or ferromagne-
tic (dark). There is also a region where the temperature is ..
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4. COARSE GRAINING OF THE CML

In a coarse grained perspective one passes from orbits {x t, t=0, 1,
2,...} in phase space to symbol or spin chains {a t, t=0, 1, 2,...}. We
introduce two possible spin states per lattice site

ai(t) :=3
+1, if x ti \ 0
−1, if x ti < 0.

(7)

Hence, if an orbit of the CML performs a cube change Ia Q Ib, the state of
the spin chain changes from a to b via a spin flip. As explained in Sec-
tion 3, a cube change Ia Q Ib consists of k°N local transitions of CML
coordinates x ti that occur at the same time. Hence a change of spin config-
uration aQ b is composed out of local spin flips ai Q −ai.

We seek for a quantitative description of the spin dynamics in terms of
the spin states a t alone. This description has to be stochastic, since on the
coarse grained level the information about the precise location of the
CML trajectory has been lost. Hence we introduce a vector p(t) where a
component pa(t) gives the probability of spin configuration a at time t.
We make the following observations concerning the spin dynamics in
the perturbative regime; more detailed considerations can be found in
Appendix C.

1. A local spin flip ai Q −ai in the spin configuration corresponds to
a transition aiai+1 Q −aiai+1 in the CML TE, d. As mentioned above, in the
perturbative regime of the CML TE, d only the coordinates x ti and x ti+1 play
a role for this transition. Both coordinates stay a rather long time in the
square J(ai)×J(ai+1), before the transition takes place. Since the CML
dynamics is also highly chaotic and mixing, the memory of a preceding
transition of one of the two coordinates x ti and x ti+1 gets lost. Hence,
in the perturbative regime a local spin flip ai Q −ai is a Markov process of
first order and can be described by a transition probability per time step
w (2)(ai ai+1 Q −ai ai+1) that only depends on the spin states at lattice site i
and i+1 before and after the spin flip. If a site i does not flip in the change
of spin configuration aQ b, we assign a probability 1−w (2)(ai ai+1 Q
−ai ai+1) for this.

2. In Appendix C it is shown that two simultaneous spin flips ai Q
−ai and aj Q −aj do not influence each other, if |i− j| > 1. As explained in
Section 3, perturbatively dominant transitions obey this condition. Hence,
simultaneous spin flips can be treated as statistically independent.
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If we take these two points into account, the following master equa-
tion for the stochastic spin dynamics arises

pa(t+1)=pa(t)+C
b ] a

[w(a | b) · pb(t)−w(b | a) · pa(t)]. (8)

Here the transition probability w(b | a) per time step for the process aQ b

is given as

w(b | a)=D
N

i=1
[d−bi , aiw

(2)(ai ai+1 Q −ai ai+1)

+dbi , ai (1−w (2)(ai ai+1 Q −ai ai+1) )], (9)

where we have used the Kronecker symbol. Thus the transition probability
w(b | a) is a product of N local factors, each one only depending on the
spin configuration at lattice sites i and i+1.

Let us finish this section with some remarks about the local spin flip
probabilities w (2)(ai ai+1 Q −ai ai+1). This quantity can take on the two
values wa and wb, depending on whether the spin flip is of type (a) or (b).
As only the flipping spin ai and its right neighbour ai+1 enter the expres-
sion w (2)(ai ai+1 Q −ai ai+1), the spin interaction is local and strongly
asymmetric. This asymmetry is due to the one-way coupling in the CML
TE, d (cf. Eq. (2)). The spin flip probabilities wa and wb can be determined
on a CML with only two lattice sites (N=2). In Appendix A expressions
for these quantities could be derived that describe the area of certain two
dimensional sets in phase space (cf. Eqs. (A21) and (A26)). If d is greater
than the corresponding critical value in Eq. (6), the respective transition
probability strictly vanishes, as these sets become empty then. Lowering d
the transition probabilities increase monotonically. It is possible to obtain
simple formulas for wa and wb for special values of E, d (cf. Eqs. (A23) and
(A27) of Appendix A). For large deformation |d| we obtain the following
results

wa=−
d

2
− E, d < −

8E
3
,

wb=−
d

2
− E, d < −4E.

(10)
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5. THE ERGODIC DYNAMICS OF THE CML

We will now discuss the ergodic dynamics of the CML TE, d and the
corresponding spin dynamics on the coarse grained level in the various
regions of parameter space (cf. the bifurcation diagram in Fig. 2).

Region 1 (d > 0). In this region no transitions take place, and every
cube contains an attractor, so there are 2N coexisting attractors.

Region 2 (−4E/3 < d < 0). In this region only transitions/spin flips
of type (a) are possible (wa > 0, wb=0). For the discussion of the spin
dynamics the introduction of defects in the spin chains a proves to be very
useful. We introduce defects on the bonds of the chain in the same way as
in the antiferromagnetic Ising model. A defect (with symbol ‘‘1’’) occurs, if
two neighbouring spins are aligned parallel, and no defect is present (‘‘0’’),
if the spins point in opposite directions. Since a defect is defined on a bond,
the defect dynamics for a spin flip ai Q −ai is determined by the change of
the triplet (ai−1, ai, ai+1)Q (ai−1, −ai, ai+1).4 Consequently, spin flips of

4 In order to have a simple translation of spin flips in the language of processes for defects, we
assume that two neighbouring spins do not flip at the same time. As mentioned before, this
is justified for E, |d|° 1, since in this case the average distance between lattice sites at which
spins flip at the same time is rather large.

type (a) can give rise to two kinds of defect behaviour, depending on the
value of the spin ai−1:

1. Annihilation of two defects, e.g.,

spin chain: ..., +1, +1, +1,...Q ..., +1, −1, +1,...

defects: ..., 1, 1,... Q ..., 0, 0,...
(11)

2. One defect moves to the left, e.g.,

spin chain: ...,−1, +1, +1,...Q ..., −1, −1, +1,...

defects: ..., 0, 1,... Q ..., 1, 0,...
(12)

Both processes 1 or 2 occur with probability wa per time step, if a triplet
(ai−1, ai, ai+1) of the appropriate form is found in the spin chain a.

For the determination of attractors in the present parameter region we
consider an orbit {x t} of the CML that performs successive transitions of
type (a). Each transition changes the defects of the corresponding spin
chain a. Since only processes 1 and 2 are possible, defects can move to the
left and annihilate in pairs. Consequently, the number of defects decreases
monotonically.
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If the lattice size N is even, any spin chain contains an even number
of defects. Therefore, in the final state all defects have annihilated each
other and no further transitions of type (a) are possible. Hence, there
are two attractors of the CML, the cubes I(+1, −1,+1, −1,..., −1,+1, −1 ) and
I(−1,+1, −1,+1,...,+1, −1,+1 ).

For N odd the number of defects in a spin chain a is odd. Conse-
quently, at the end of the transient dynamics one defect remains. Since this
defect can change its location via process 2 (cf. Eq. (12)), the attractor is
the union of all 2 N cubes Ia for which a contains a single ‘‘+1+1’’ or
‘‘−1−1’’ sequence.

In both cases the attractors occupy only a small portion of phase space
for N± 1. Long transients occur in region 2, if one starts from random
initial conditions.

In the coarse grained perspective the attractors correspond to anti-
ferromagnetic ground states at zero temperature for the nearest neighbour
Ising model. Of course, one would get these ground states also as stationary
distributions of the master equation (8), if wa > 0 and wb=0. Generally,
stationary distributions of the master equation for the spin dynamics corre-
spond to attractors of the underlying CML.

Region 3 (d < −4E/3). In this region transitions/spin flips of type
(b) are possible, too. Depending on the left neighbour of the transition index,
a type (b) spin flip can induce the following defect movements:

3. One defect moves to the right, e.g.,

spin chain: ...,−1, −1, +1,...Q ...,−1, +1, +1,...

defects: ..., 1, 0,... Q ..., 0, 1,...
(13)

4. Two adjacent defects are generated simultaneously, e.g.,

spin chain: ...,+1, −1, +1,...Q ..., +1, +1, +1,...

defects: ..., 0, 0,... Q ..., 1, 1,...
(14)

These two processes take place with a probability wb per time step.
Together with processes 1 and 2 in Eqs. (11) and (12), we have four differ-
ent defect actions possible in region 3. Note that in general there is a bias in
the defect diffusion, since for wa ] wb process 2 (Eq. (12)) and 3 (Eq. (13))
occur with different probability.

The ergodic behaviour of the CML in region 3 is simple, if one looks
at attractors. Any index component ai can change in the next cube change
Ia Q Ib of an orbit. Therefore, there is a single attractor that encompasses
all cubes Ia.
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In the coarse grained perspective one asks for the stationary distribu-
tion p stat of the master equation (8) that corresponds to this attractor. The
stationary distribution fulfills the condition

C
b ] a

[w(a | b) · p stat
b −w(b | a) · p stat

a ]=0. (15)

Here the transition probabilities w(b | a) are given in Eq. (9). In Appendix
C it is shown that this condition can be solved with

p stat
a =cŒ 1wb

wa

2 C
N
i=1 ai ai+1 /4

=
1
Z
exp 1bJ C

N

i=1
aiai+1 2 . (16)

Therefore, as in region 2 the stationary distribution of the master equation
corresponds to the canonical distribution of a nearest neighbour Ising
model. However, in region 3 the temperature T=1/b of the canonical
distribution is nonzero, as it is given by

bJ=
1
4
ln 1wb

wa

2 . (17)

Taking a spin coupling J with modulus one, ferromagnetic coupling
(J=+1) is obtained for (wb/wa) > 1, whereas in the opposite case
(wb/wa) < 1 antiferromagnetic coupling (J=−1) follows. Both cases are
realised in region 3 as shown by the gray shading in Fig. 2. In the anti-
ferromagnetic part the temperature can take on all positive values, whereas
in the ferromagnetic part only fairly high values are realised, since
(wb/wa) M 1.2 in the perturbative regime. Spin coupling and diffusion bias
are linked together: for ferromagnetic coupling defects diffuse preferably to
the right, for antiferromagnetic coupling to the left. The cases with differ-
ent coupling are separated by a line on which wa=wb or T=.. This line
can be calculated as d=−2E (cf. Appendix A). There is also a large subset
of region 3 on which T=. holds (cf. Fig. 2), since according to Eq. (10)
wa=wb holds for d < −4E. One can also say that there is no spin interac-
tion in this area of parameter space.

Next, we would like to address the question how much one can trust
the presented results about the ergodic dynamics of the CML. Since we
have only worked out the first order of perturbation theory, neglected
higher order transitions might spoil the picture. However, numerical simu-
lations indicate that the calculated attractors of region 2 are indeed reached
for any initial condition of the CML and thereafter not left any more. So,
higher order transitions do not seem to have any influence on the attractors
in region 2. On a more general level, one can put forward the following
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time scale argument concerning an attractor A that is determined in leading
order perturbation theory. Higher order transitions through which an orbit
could leave the set A occur on a rather large time scale in comparison to
the relatively fast dominant transitions through which the orbit is pulled
back to the set A again. Because of this intermittent dynamics the set A is
at least the core region of a possibly bigger attractor, i.e., A carries most of
the natural measure of that attractor. Likewise, there will be corrections to
the Ising Hamiltonian that describes the stationary distribution p stat of spin
states in region 3 (cf. Eq. (16)). However, these correction terms are
suppressed with a factor of the order O(E, d) in perturbation theory. The
thermodynamic limit NQ. poses no problem to the validity of the master
equation (8) and its solution in (16). For, in the perturbation theory we
have not neglected any changes of spin configuration that become more
important for larger and larger N. Besides, the factors (1−w (2)(ai ai+1 Q
−ai ai+1)) in Eq. (9) for the transition probabilities w(b | a) ensure that the
sum of all these transition probabilities stays finite for NQ..

Finally, we compare the different ergodic behaviour in the 3 regions
with the phases of the symmetrically coupled CML that has been analysed
in ref. 8. In that case 4 regions with different ergodic behaviour have been
found. On the level of attractors, the results for the two ways of coupling
are rather similar. For d \ 0 no transitions are possible in both cases.
Furthermore, also the symmetrically coupled CML reaches an antiferro-
magneticgroundstate in someregionofparameter space,namely for −4E/3 [
d < −2E/3. For d < −4E/3 the stationary distribution of the corresponding
spin models can be characterised by an Ising Hamiltonian in both cases.
However, there is an additional phase for symmetric coupling, region 2 of
ref. 8 (for parameter values −2E/3 < d < 0), where many attractors coexist.
Also there is no bias in defect diffusion for symmetric coupling of the
CML, so that the dynamic properties of both CMLs are rather different.
This will be taken up in the next section.

6. NON-EQUILIBRIUM BEHAVIOUR OF THE CML

We now take a closer look at the non-equilibrium behaviour of the
CML TE, d and its corresponding spin dynamics. The bias in the diffusion is
the cause that the stationary distribution (16) does not obey detailed
balance in region 3

w(b | a) p stat
a ] w(a | b) p stat

b .

This can be verified easily. We take the spin configuration b as equal
to a, except that one defect is shifted to a neighbouring empty site. Then
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p stat
a =p stat

b holds, but w(b | a) ] w(a | b) because of the bias. Since detailed
balance is violated, the one-way coupled CML describes a stationary non-
equilibrium state (cf. refs. 3 and 2). It is remarkable that the distribution
of spin configurations in this non-equilibrium state is nevertheless described
by the Ising Hamiltonian. At db=−4E/3 the CML TE, d undergoes a non-
equilibrium phase transition, since as discussed in the last section we have
antiferromagnetic order in region 2 and disorder in region 3 of parameter
space. The phase transition occurs at temperature zero, in accordance with
the one dimensional lattice and the short ranged spin interaction.

The violation of detailed balance in region 3 can be understood in yet
another way. A net flux of defects goes around in the stationary non-equi-
librium state. We define this flux as

f :=
1
N

(O# of defects that move to the leftP

−O# of defects that move to the rightP). (18)

The expectation values are defined with respect to the stationary distribu-
tion of Eq. (16). If we consider defect configurations ã that correspond to
spin chains a, we can rewrite the flux as

f=
1
N

(waO# of ‘‘01’’ sequences in ãP−wbO# of ‘‘10’’ sequences in ãP).
(19)

This can be evaluated as

f=
wa−wb

4
(1−c(2)). (20)

Here the well–known (equal time) two spin correlation function of the one
dimensional Ising model comes into play that is given as (11)

c(r) :=Oaiai+rP=(tanh(bJ)) |r|=1 `wb/wa−1

`wb/wa+1
2 |r|, (21)

where we have used Eq. (17). Hence we get the final result for the flux of
defects

f=
wa−wb

4
11−1 `wb/wa−1

`wb/wa+1
222 . (22)
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Fig. 3. Left: the two probabilities wa (solid line) and wb (broken line) that give rise to defect
diffusion to the left and right, respectively, are shown as a function of the parameter d (for
fixed E=0.001). Here wa and wb are calculated with the help of the theoretical formulas (A26)
and (A21) that are derived in Appendix A. Both probabilities increase when d decreases. For
d % −4E/3 the probability wb starts from zero, whereas wa has already a finite value at that
point. But wb grows faster than wa with decreasing d, so wb becomes greater than wa for
d M −2E. For even smaller values of d the two probabilities approach equal values in accor-
dance with Eq. (10). Right: the flux of defects is plotted against the deformation parameter d
where E=0.001 stays again fixed. The points are obtained from simulations of the CML for
these parameter values (the numerical errors are of the order of 1 to 3%). The solid line gives
the theoretical prediction according to Eq. (22) where wa and wb are again determined from
the expressions (A26) and (A21), respectively.

As shown in Appendix A, the probabilities wa and wb can be identified
with the area of certain transition sets, the sets U++, −+ and U−+,++,
respectively (cf. their definition in Eqs. (A25) and (A19)). On the left side of
Fig. 3 the dependence of the two probabilities wa and wb with d (for E
fixed) is shown where we have calculated the areas of the corresponding
transition sets numerically. According to Eq. (22), the flux of defects is
proportional to the difference (wa−wb). Consequently, if wa > wb, defects
diffuse preferably to the left; if wa < wb, defects move more often to the
right. The direction of the current changes at the value of d % −2E for
which wa=wb holds. Hence, the flux f can adopt positive and negative
values as illustrated in the right part of Fig. 3. In this figure one can also
see a very good agreement between the theoretical expression (20) and a
numerical simulation of the CML in region 3.

Another quantity that is affected by the bias is the spatio-temporal
two spin correlation function

C̃(r, Dt) :=Oai(t) ai+r(t+Dt)P. (23)

Here the expectation value is performed again with respect to the stationary
distribution of Eq. (16). Since this distribution is translationally invariant,
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the quantity in Eq. (23) does not depend on the lattice index i. The cal-
culation of the spatio-temporal correlation is carried out in Appendix B.
The result for large lattices (N± 1) is

C̃(r, Dt)=exp(−(wa+wb) Dt) C
.

n=0
[c(1)] |n+r|

((wb−wa) Dt)n

n!
(24)

where c(1) denotes the equal time spin correlation for distance one in the
Ising model (cf. Eq. (21)). Hence for r \ 0

C̃(r, Dt)=[c(1)]r exp(−2`wawb Dt). (25)

For negative r and wa > wb an asymptotic expansion for large times, i.e.,
(wa−wb) Dt± 1, gives (cf. Appendix B)

C̃(r, Dt) 4 (−1) r= wa

wb
exp(−2wbDt)

exp 1−[(wa−wb) Dt+r]2

2(wa−wb) Dt
2

`2p(wa−wb) Dt
. (26)

According to this equation, in the antiferromagnetic regime the spatio-tem-
poral correlation function develops a diffusive peak moving with velocity

Fig. 4. Here we compare simulations of the modulus of the spatio-temporal correlation
function |C̃(r, Dt)| with theoretical predictions. We measured the spatio-temporal correlation
function in CML simulations for two time differences Dt=50000 (squares) and Dt=100000
(crosses). The numerical errors of the simulation are approximately 1 to 3%. The theoretical
prediction of the correlation function according to Eq. (24) is shown as a broken line. With
increasing Dt the peak of the correlation function moves to the left and broadens. The
parameters of the CML are taken as E=0.005, d=−0.007. The corresponding transition rates
for spin flips of type (a) and (b) are gained from a long time series of the CML and read
wa % 0.000262 and wb % 0.000020. Hence, the coupling is strongly antiferromagnetic, so the
correlation function C̃(r, Dt) oscillates between positive and negative values.
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(wa−wb) to the left and spreading according to the diffusion constant
(wa−wb). This is illustrated in Fig. 4 where an excellent agreement between
the CML simulations and the (exact) theoretical prediction of Eq. (24) is
found.

From Eq. (25) and (26) one can infer

C̃(r, Dt) ] C̃(−r, Dt), Dt > 0.

This asymmetry is caused by the diffusion bias and is not present for the
equal time correlation functions (Dt=0).

7. THE CASE OF STRONG COUPLING

As mentioned in Section 2 there is another range of coupling values E
where the unidirectional CML of Eq. (2) can be studied with a perturbative
approach. In this case the coupling is very strong, i.e., E=1−g and g° 1.
Inserting this into Eq. (2) one obtains for the CML dynamics

x t+1i =gfd(x
t
i)+(1−g) fd(x

t
i+1) , i=1, 2,..., N. (27)

Accordingly, the value at lattice site i at time t+1 is mainly determined by
its predecessor at the right neighbour site. We can treat the first term on
the right of Eq. (27) as a perturbation, since g° 1. The analogy of the
strong coupling regime to the one with E° 1 becomes even clearer, if one
passes over to an inertial frame that moves in each time step one site to the
left. For each time step t ¥N this Galilei transformation can be written as

x̃ ti=x ti− t, i=1, 2,..., N, (28)

where periodic boundary are taken into account. The values x̃ ti constitute
the CML in the moving frame. The dynamics in this frame is given by

x̃ t+1i =(1−g) fd(x̃
t
i)+gfd(x̃

t
i−1), i=1, 2,..., N. (29)

This is a CML with a small coupling strength g. The only difference of the
last equation to Eq. (2) is that here the lattice site is coupled to its left
neighbour.

To understand the dynamics of the strong coupling regime it is con-
venient to analyse Eq. (29) and then to transform back to the rest frame via
the inverse of the Galilei transformation (28). In this manner one can infer
two dominant transition types in the regime g° 1 that correspond to the
discussed transition types (a) and (b) in the regime E° 1. The critical
d values of these transitions are dcrit=0 and dcrit=−4g/3, respectively.
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Therefore, for g, |d|° 1 one can again distinguish three parameter regions
with different ergodic behaviour:

Region 1 (d \ 0). There are no transitions in the moving inertial
frame. Therefore each spin configuration a t is shifted one unit to the left in
each time step:

a t : · · ·+−++− · · ·

a t+1 : · · ·+−++− · · ·
(30)

Region 2 (−4g/3 < d < 0). Here transitions/spin flips of the form

a t : · · ·++− · · ·

a t+1 : · · ·+++· · ·
(31)

and those related by symmetry are allowed. Therefore there is only one
attractor (for N even) that is an antiferromagnetic ground state that moves
with unit velocity to the left.

Region 3 (d < −4g/3). Here also the inverse transition to the one of
Eq. (31) occurs. Therefore the attractor corresponds to an Ising chain at
finite temperature that moves with unit velocity to the left.

That small and strong coupling are so closely related is peculiar to the
unidirectional coupling. For a symmetrically coupled CML where two
nearest neighbours interact with a lattice site this duality of weak and
strong coupling no longer holds.

8. SUMMARY

In the present article we have analysed a spatially one dimensional
coupled map lattice with an unidirectional local coupling. In order to
obtain analytic results, we have confined ourselves to a perturbative regime
in which the coupling strength is small and the single site map fd is taken
in the vicinity of a symmetry breaking bifurcation. Via a coarse graining
the CML could be mapped to a stochastic spin dynamics with an aniso-
tropic local interaction. Because of a Markov behaviour in the perturbative
regime, a master equation could be written down that describes the spin
dynamics quantitatively.

In perturbation theory there are three regions in parameter space with
different ergodic behaviour of the CML and different spin dynamics. These
regions are separated by bifurcation lines of which the leading order could
be calculated analytically by analysing a CML with only two sites. As in
the CML with a symmetric coupling that has been studied in ref. 8, the
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stationary distribution of the master equation can be identified with a
canonical distribution of the nearest neighbour Ising model. The tempera-
ture and the sign of the spin coupling constant can be calculated from the
microscopic parameters of the CML. Antiferromagnetic coupling is pre-
dominant in the perturbative regime. Also like in ref. 8, there exists a whole
region where the spin dynamics runs into a totally ordered antiferromag-
netic state at zero temperature. The CML also has a phase transition from
antiferromagnetic order to disorder at zero temperature.

However, in contrast to the results in ref. 8 detailed balance is violated
for the unidirectional CML, so that it describes a stationary non-equilib-
rium state. The non-equilibrium behaviour is caused by a bias in the diffu-
sion of defects that gives rise to a macroscopic defect flux. These transport
phenomena can also be detected in the spatio-temporal two spin correla-
tion function.

Of course, our approach is not mathematically rigorous, but we have
good indication that the results are valid at least in the perturbative regime.
The comparison with numerical simulations shows that the leading order of
perturbation theory is a good description for parameter values E, |d| M
5 · 10−2.

As a project for the next future, we would like to go beyond perturba-
tion theory in CMLs with local coupling. Then it will no longer be the case
that a local coupling in the CML gives rise to local coupling in the corre-
sponding spin model. We expect that for large coupling we have long-ranged
interactions between spins. Besides, the Markov property will no longer
hold in this case. Therefore, a non-perturbative approach poses quite a
challenge even for CMLs in one spatial dimension.

APPENDIX A. THE CML FOR N=2

As discussed in Section 3, for the analysis of dominant transitions
aiai+1 Q −aiai+1 one can reduce the CML dynamics to the dynamics of the
transition coordinate x ti and its neighbour x ti+1. Therefore, a CML with
two sites (N=2) suffices for the understanding of the transitions of type
(a) and (b) that are listed in Eqs. (4) and (5). In this appendix we analyse
the corresponding transitions Ia1, a2 Q I−a1, a2 of the CML with N=2 rather
extensively. The geometric method that we will employ can be easily
visualised in the two dimensional phase space. Because of the unidirectio-
nal coupling in the CML TE, d we couple the coordinate x t1 to the coordi-
nate x t2, but not vice versa. Hence the CML dynamics for N=2 can be
written as

x t+11 =(1− E) fd(x
t
1)+Efd(x

t
2), x t+12 =fd(x

t
2). (A1)
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In order that a phase space point can be mapped from a square Ia to a
square Ib (b1=−a1, b2=a2), the image of the former square has to inter-
sect the latter. Therefore, the overlap set

Oa, b :=TE, d(Ia) 5 Ib (A2)

has to be non-empty. However, in order that a transition Ia Q Ib becomes
possible, the overlap set Oa, b has to be reachable by an orbit that starts in
the inner part5 of the square Ia. To check this condition we investigate the

5 For our perturbative treatment we define the inner part of Ia as the set of all x ¥ Ia which
have at least a small fixed positive distance d from the boundary of this square. The quantity
d should not depend on the expansion parameters E and d.

pre-images of the overlap set Oa, b that are contained in Ia. The pre-images
of generation k are defined in the following recursive way

T−1
E, d(Oa, b) :={x ¥ Ia |TE, d(x) ¥ Oa, b},

T−k
E, d(Oa, b) :={x ¥ Ia |TE, d(x) ¥ T

−(k−1)
E, d (Oa, b)} , k=2, 3,....

(A3)

We start with the detailed analysis of the transition I−+ Q I++ that is
related to transition type (b) (cf. Eq. (A3)). Here and in the following we
write ‘‘+’’ instead of ‘‘+1’’ and ‘‘− ’’ instead of ‘‘−1’’.

A.1. THE TRANSITION I−+ Q I++

The overlap set O−+,++ (cf. its definition in Eq. (A2)) is non-empty for
general d and displayed in Fig. 5 for d=−E. It can be shown that most
points x ¥ O−+,++ wander towards the center of the square I++ under
further iteration, exceptional points having a negligible area of size
O(E2, d2, Ed). Hence, if the overlap set O−+,++ can be reached by orbits
{x t , t=0, 1, 2,...} with starting point x0 in the inner part of I−+, then a
transition I−+ Q I++ is possible. This condition will also determine the
critical value dcrit(E) of this transition. Therefore, for given parameters E, d
we trace back the points of the overlap set and construct pre-image sets
T−k
E, d(O−+,++) in I−+ (cf. definition in Eq. (A3)).

Instead of the CML dynamics in Eq. (A1), we can use the following
simplified map for the calculation of pre-images in the perturbative regime

[T4E, d(x)]1=fd(x1)+Efd=0(x2),

[T4E, d(x)]2=fd=0(x2). (A4)
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Fig. 5. Overlap set O−+,++ and its pre-image set T−1
E, d(O−+,++) are shown for d=−E. The

forbidden area B−+ … I−+ contains the pre-images of O−+,++ on the left side.

In Fig. 5 the first generation pre-images of the overlap set are displayed
(for d=−E): because of the tent shape of the single site map fd(x) the
pre-images are located either near the right (x1=O(E, d)) or the left edge
(x1=−1+O(E, d)) of the square I−+. At this stage the forbidden area
comes into play. The forbidden area B−+ is the set of points in I−+ that do
not have pre-images with respect to the map T4E, d. This set is non-empty,
since the map T4E, d is not surjective. The width of the set B−+ near the left
edge of I−+ is given as (cf. Fig. 5)

b(x2)=E+Ex2 , x2 ¥ [0, 1]. (A5)

Points of T4 −1E, d(O−+,++) on the left side of I−+ are contained in the forbid-
den area for this choice of parameters (cf. Fig. 5). Then these points have
no pre-images themselves.

Let us define the right and left components of the pre-image sets
x ¥ T4 −kE, d(O−+,++) as follows

G (k) :={x ¥ T4 −kE, d(O−+,++) | x1=O(E, d)},

H (k) :={x ¥ T4 −kE, d(O−+,++) | x1=−1+O(E, d)}. (A6)

We first concentrate on the sets {G (k)}. Figure 6 (left side) reveals a
beautiful structure of these sets. The following properties of the generations
G (k) that are inherent in Fig. 6 are easily obtained:

• The first generation G (1) consists of two triangles with vertices {(0, 0),
(0, 1/2), (−E/2, 1/2)} and {(0, 1), (0, 1/2), (−E/2, 1/2)}, respectively.

• A generation G (k) encompasses 2k triangles, each of them having the
same area. The area of each triangle shrinks by a factor 4, if one passes
from G (k−1) to G (k).
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Fig. 6. Left: The first three generations G (k) and H (k) near the right and left edge of I−+,
respectively. The envelopes R. and S. of all pre-image sets G (k) and H (k), respectively, are
related to the Takagi function. Right: Takagi function F(x).

• Two neighbouring triangles of the same generation share a corner or
a side with length of order E.

• The union of the first k generations

S (k)
G :=0

k

n=1
G (n) (A7)

is a simply connected set.

To determine the boundary of S (k)
G we consider its height function

R (k)(x2) :=inf{x1 | (x1, x2) ¥ S
(k)
G }. (A8)

Since R (k+1) is mapped on R (k) by the simplified map T4E, d (Eq. (A4)), we get
the representation

R (k)(x2)=−E C
k

i=1

f i
d=0(x2)
2 i

, x2 ¥ [0, 1]. (A9)

For k odd these curves admit 2 (k−1)/2 absolute maxima at

xmin ¥ 3
1
2
11+ C

(k−1)/2

j=1

ij
4 j
2 : ij ¥ {−1,+1}, j=1, 2,..., (k−1)/24 (A10)

of equal height

R (k)(xmin)=−
E

2
C

(k−1)/2

i=0

1
4 i
. (A11)
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In the limit kQ. the set S.G has a fractal boundary. The boundary func-
tion is given by

R.(x2)= lim
kQ.

R (k)(x2)=−E C
.

i=1

f i
d=0(x2)
2 i

=−EF(x2). (A12)

Here F(x) is the famous Takagi function, a prominent example of a con-
tinuous but nowhere differentiable function. This function is displayed on
the right side of Fig. 6 and shows a high degree of self-similarity. It is
amusing to note that the Takagi function F(x) that has already been
introduced in 1903 has shown up in various recent studies of dynamical
systems. (13, 14) The height of the set S.G follows easily from Eq. (A11)

h(S.G ) :=sup{|x1 | | x ¥ S
.

G }=
2E
3
. (A13)

The extension of the set S.G is approximately independent of the parameter
d and does not contain any points that belong to the inner part of I−+.
Hence, we have to look for the sets {H(k)} near the left edge of I−+ in order
to determine the critical value for d. The location of the pre-image sets
{H(k)} can be determined, if one knows the sets {G(k)}, since both sets H (k)

and G (k) are pre-images of the set G (k−1) (if d > dcrit(E)). Therefore, the set
H (k) (k \ 2) can be obtained geometrically through a reflection of the set
G (k) at the line x1=−1/2 and an additional offset −d/2 (cf. left side of
Fig. 6). This carries over to the union set S.H :=1.

k=1 H
(k). In analogy to

equation (A9) the right boundary of the set S.H can be expressed with the
Takagi function as

S.(x2) :=sup{x1 | (x1, x2) ¥ S
.

G }=−1−
d

2
+EF(x2) , x2 ¥ [0, 1].

(A14)

Hence, the thickness of S.H is given by

h(S.H) :=sup{1+x1 | x ¥ S
.

H }=−
d

2
+
2E
3
. (A15)

If all left components H (k) are contained in the forbidden area, i.e.,

S.H … B−+ (A16)

holds, no further pre-images of the overlap setO−+,++ appear, and the union
S.G 2 S.H encompasses all pre-images. Then the transition I−+ Q I++ is not
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Fig. 7. Non-empty transition set U−+,++ :=S.H 0B−+ for d slightly smaller than dcrit(E). The
set S.H is no longer contained in the forbidden area B−+ for these d values.

possible, because all pre-images of the overlap set are located near the edge
of I−+ and contain no point of the inner part of I−+. Therefore, condition
(A16) gives the clue for the determination of dcrit(E). At the critical value
dcrit(E) one peak of the boundary S.H with maximal height h(S.H) collides
with the right border of the forbidden area B−+ (cf. Fig. 7). Since the
boundary of the forbidden area has according to Eq. (A5) a finite slope,
the peak with the smallest x2 coordinate crosses the right boundary of B−+

at first.6 According to Eq. (A10) this peak is located at x2=1/3. Then

6 This can be shown rigorously with the inequality

sup{x1 | (x1, x2) ¥ S
.

H } [ sup{x1 | (x1, 1/3) ¥ S
.

H}+E(x2−
1
3).

Eqs. (A15) and (A5) yield

2
3
E−
dcrit(E)

2
=h(S.H)=b(x2=1/3)=

4
3
E, (A17)

and consequently we arrive at the critical value

dcrit(E)=− 4
3 E. (A18)

Therewith we have also determined the leading order of the critical value db
for type (b) transitions in the CML TE, d (cf. Eq. (6)).

For the transition I−+ Q I++ we can define the transition setU−+,++ as

U−+,++ :=S.H 0B−+. (A19)

This set becomes non-empty for d < dcrit(E) (cf. Fig. 7). An orbit x t per-
forms a transition I−+ Q I++, if it enters the set U−+,++ at time t0. For the
transition coordinate x t01 % −1 and x t0+11 =O(E, d) holds. The set U−+,++
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has a pre-image set T−1
E, d(U−+,++) to which points x in the inner part of I−+

belong (x1 % − 1
2 ). Hence, the overlap set O−+,++ can be reached by orbits

with starting point in the inner part of I−+, so the transition I−+ Q I++ is
possible for d < dcrit(E).

Next, we would like to calculate the transition rate, i.e., the probability
per time step for the transition I−+ Q I++ that appears in the master equa-
tion (8) for the CML. Before the transition occurs, an orbit stays a rather
long time in the square I−+. Since TE, d is a perturbed tent map, the elements
of the orbit are distributed quite homogeneously in this square. If the orbit
reaches the set T−1

E, d(U−+,++), a transition follows. Therefore, in a statistical
perspective the leading order of the transition probability is given as

w (2)(−+Q++)=
Area(T−1

E, d(U−+,++))
Area(I−+)

=Area(U−+,++). (A20)

We have thus linked the transition probability with the area of the transi-
tion set U−+,++ (cf. Fig. 7). The area of the set U−+,++ can be expressed
with the help of Eqs. (A14) and (A5), and we get for the transition proba-
bility

w (2)(−+Q++)=F
1

0
dx2 max 30, −d

2
+EF(x2)− E(1+x2)4 . (A21)

One can infer from this expression that the transition probability increases
monotonically as d becomes smaller. Since the Takagi function F(x) has a
complicated graph (cf. Fig. 6), it is very tedious to evaluate Eq. (A21) for
general E, d. On the left side of Fig. 3 a numerical evaluation of expression
(A21) is shown for varying d and E fixed (the curve for the probability wb).
However, for d [ −4E it can be found

w (2)(−+Q++)=−
d

2
− E. (A22)

In addition, using the (partial) self-similarity of the Takagi function one
can compute the transition probability for selected d values that accu-
mulate at the critical value dcrit(E)=db=−4E/3

w (2)(−+Q++)=
E

60 · 8k−1
for d=db−

2E
3 · 4k

, k=0, 1, 2,... (A23)
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Hence we infer the asymptotic property

w (2)(−+Q++) ’ E 1db−d
E
23/2, (d < db). (A24)

Equation (A24) together with Eq. (17) indicates that scaling at the phase
transition and the numerical values of the critical exponents may strongly
depend on whether such a behaviour is evaluated in dependence on the
actual map parameters or in terms of the appropriate temperature of the
corresponding spin model.

A.2. THE TRANSITION I++ Q I−+

The transition I++ Q I−+ corresponds to transition type (a) of Eq. (5).
The study of this transition is quite analogous to that of the transition
I−+ Q I++, so that we will be rather brief in the following. The overlap set
O++, −+ is non-empty for d < 0. On the left of Fig. 8 this overlap set and its
pre-images are shown for d % − E. The pre-image set T−1

E, d(O++, −+) is
located near the right edge of I++ (x1 % 1). There is also a forbidden area
B++ in the square I++. However, it is important to notice that not the
whole pre-image set T−1

E, d(O++, −+) is contained in the forbidden area
(cf. left side of Fig. 8). This holds for arbitrary d < 0, and thus the pre-
image set of second generation T−2

E, d(O++, −+) is non-empty (cf. Fig. 8) and

Fig. 8. Left: Overlap set O++, −+ and pre-image sets of first and second generation are
shown. Note that the dark shaded subset of T−1

E, d(O++, −+) is located outside the forbidden
area B++. Right: The overlap set O++, −+ intersects the set S.G (approximated here by three
pre-image generations).
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is located in the inner part of I++ (x1 % 1/2). Since the union of pre-image
sets T−k

E, d(O++, −+) with k \ 2 has a substantial volume in the inner part of
I++, the transition I++ Q I−+ is possible for d < 0. Hence we find
dcrit(E)=0 as the critical value for this transition and thus have derived
da=0 in Eq. (6).

Concerning the calculation of the transition rate w (2)(++Q −+)
note that not all points of the overlap set O++, −+ reach the inner part of
I−+ upon further iteration. For, the set S.G , that has been introduced in the
last subsection (cf. Eq. (A7)), intersects the overlap set O++, −+ (cf. right
part of Fig. 8). Points of S.G wander back into the square I++ under
further iteration. Besides, one has to take into account that a major part of
the pre-image set (of first generation) T−1

E, d(O++, −+) is contained in the
forbidden area B++. Hence, only points of the transition set

U++, −+ :={x ¥ T−1
E, d(O++, −+)0B++ |TE, d(x) ¥ O++, −+0S

.

G } (A25)

perform a transition to the inner part of I−+. In a statistical perspective we
arrive at a transition probability

w (2)(++Q −+)=Area(U++, −+)

=
1
4
1F 1

0
dx2(max{0, −d−2Ex2+R.(x2)}

+max{0, −d−2E+R.(x2)})2 , (A26)

where R.(x2) is the boundary function of S.G and is given in Eq. (A12).
We have two summands under the integral of equation (A26) because of the
two components of the set T−1

E, d(O++, −+) (cf. left side of Fig. 8). A numerical
evaluation of Eq. (A26) is shown on the left side of Fig. 3 (the curve of the
probabilitywa).

Finally, we could evaluate equation (A26) for the transition rate
w(++Q −+) analytically for the following parameter values

w (2)(−+Q++)=−
d

2
− E, d < −

8
3
E,

w (2)(−+Q++)=
2E
15

, d=−2E.

(A27)
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APPENDIX B. THE SPATIO-TEMPORAL CORRELATION FUNCTION

In this appendix we will calculate the spatio-temporal two spin corre-
lation function of the CML induced spin dynamics in region 3, i.e., we
derive Eq. (24).

First, we pass over from a discrete time variable (t ¥N) to a continu-
ous one (y ¥ R+) by introducing a scaled time y=Et. The time variable y
becomes a continuous variable in the limit EQ 0, keeping the ratio d/E
fixed. The introduction of a continuous time is a good approximation in
the perturbative regime (E, |d|° 1) and simplifies calculations. In this
approach the master equation (8) for the spin dynamics becomes a differ-
ential equation

dpa(y)
dy

=C
b ] a

[r(a | b) · pb(y)−r(b | a) · pa(y)]. (B1)

For fixed system size N, in the limit E, |d|Q 0 those transitions aQ b

dominate where only one spin flips, i.e., bi=−ai, bj=aj -j ] i. For,
according to Eq. (9) all transitions aQ b with more than one spin flip are
suppressed by a factor O(E, d) in perturbation theory, because each spin flip
probability w (2)(aiai+1 Q −aiai+1) has a magnitude of the order O(E, d).
Hence, in the differential equation (B1) we have only to sum over spin
states b which differ from a in one spin. The transition rates r(b | a) in
Eq. (B1) are related to the transition probabilities w(b | a) in Eq. (9) as
follows

r(b | a)=lim
EQ 0

w(b | a)
E

= lim
EQ 0

w (2)(aiai+1 Q −aiai+1)
E

d−ai , bi D
j( ] i)
daj , bj

=:
R
2
(1− c aiai+1) d−ai , bi D

j( ] i)
daj , bj . (B2)

The parameters R and c related to the transition probabilities wa and wb for
the two possible spin flip types aiai+1 Q −aiai+1 as follows

R=lim
EQ 0

wa+wb

E
, c=lim

EQ 0

wb−wa

wa+wb
. (B3)

Note that according to Eq. (B2) only the right nearest neighbour and not
the left one influences the transition rates.
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The spatio-temporal two spin correlation function of Eq. (23) can be
written as

C̃(r, Dy)= C
{a, aŒ}

p stat
a ai p(a ; y | aŒ; y+Dy) a −i+r . (B4)

Here p(a; y | aŒ; y+Dy) denotes the conditional probability for a configuration
aŒ at time y+Dy, if at time y the configuration a is present. Since the condi-
tional probability also obeys the master equation (B1), the following system
of differential equations follows from the master equation and the rates (B2)

“

“Dy
C̃(r, Dy)=−R(C̃(r, Dy)− cC̃(r+1, Dy)). (B5)

Introducing the spatial Fourier transform

C̃(q, Dy) := C
.

r=−.
e iqrC̃(r, Dy) (B6)

the system decouples

“

“Dy
C̃(q, Dy)=−R(1− ce−iq) C̃(q, Dy), (B7)

where the initial condition is given by the Fourier transform of the equal
time correlation function (21)

C̃(q, 0)=1+
e iqc(1)

1−e iqc(1)
+

e−iqc(1)
1−e−iqc(1)

. (B8)

Integrating Eq. (B7), taking the inverse Fourier transform and finally
expressing R and c in terms of wa and wb according to Eq. (B3) and
changing to original discrete time, we arrive at the integral representation
of the correlation function for N± 1

C̃(r, Dt)=
1
2p

exp(−(wa+wb) Dt) F
2p

0
C̃(q, 0) exp(e−iq(wb−wa) Dt− iqr) dq.

(B9)

The series representation (24) follows by using the Taylor series expansion

exp(e−iq(wb−wa) Dt)=C
.

n=0

((wb−wa) Dt)n

n!
e−iqn. (B10)
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In order to derive the asymptotic result (26) we use the Laplace method
and expand the exponential under the integral in Eq. (B9) at q=p to
second order

C̃(r, Dt) 4
1
2p

exp(−(wa+wb) Dt) e−ipr F
.

−.
C̃(p, 0)

× exp((wa−wb) Dt[1−q2/2]−iq((wa−wb)+r)) dq. (B11)

Evaluation of the resulting Gaussian integral yields Eq. (26). Since the
exponent contains an imaginary part, the Laplace method cannot be
applied in the strict sense. That feature modifies the Gaussian tails of our
asymptotic result.

APPENDIX C. THE MASTER EQUATION FOR THE CML

In this appendix we will first give an argument for the form of the
transition probability w(a | b) in Eq. (9). Then we will show that the
stationary distribution of Eq. (16) solves the master equation (8) with these
transition probabilities.

To get an expression forw(a | b)we will analyse the underlying dynamics
of the CML TE, d in perturbation theory. The transition probability w(a | b)
per time step for a change of spin configuration aQ b can be interpreted in
the following geometric way

w(b | a)=
Vol(S(aQ b))
Vol(Q(a))

. (C1)

The two involved subsets of phase space are defined as

Q(a) :={points x t of phase space that can be reached by CML
orbits, if the corresponding spin state is a}

S(aQ b) :={points x t0 of CML orbits that perform a change of spin
configuration aQ b at time t0}

In perturbation theory the volume of the set Q(a) is 1+O(E, d). In
view of the preceding definitions Q(a) and especially S(aQ b) we have to
specify at which instant in time a CML orbit {x t , t=0, 1, 2,...} changes its
spin configuration from a to b. A change aQ b is composed out of local
transitions/sign changes ai, ai+1 Q −ai, ai+1 as explained in Section 3. For
the analysis of a transition we can restrict ourselves to the dynamics of the
two neighbouring coordinates x ti and x ti+1. We define the point in time
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t0 ¥N of a transition as the iteration step when the orbit {(x ti , x
t
i+1), t=

0, 1, 2,...} of the two coordinates is located in the two dimensional transition
set UN=2(aiai+1 Q −aiai+1). These transition sets have been introduced in
Appendix A: the transition set U−+,++ for the type (b) transition −1,+1Q
+1,+1 is given in Eq. (A19), the transition set U++, −+ for the type (a)
transition +1,+1Q −1,+1 in Eq. (A25). The general transition sets
UN=2(aiai+1 Q aiai+1) for type (a) and (b) transitions can be easily con-
structed from these examples by symmetry operations. If (x t0i , x

t0
i+1) ¥

UN=2(aiai+1 Q −aiai+1), it holds |x t0i | % 1, x t0+1i =O(E, d), and in the
following iterations the coordinate changes from the interval J(ai) to
J(−ai). Of course, the definition of the point in time when a transition
takes place is to some extent convention.

Concerning Eq. (9) for the transition probability w(a | b), we consider
as an example a change of spin configuration aQ b with two simultaneous
spin flips ai, ai+1 Q −ai, ai+1 and aj, aj+1 Q −aj, aj+1 that are more than
one lattice site apart from each other, i.e., |i− j| > 1. We now explain that
each of the two spin flips contributes a factor w (2)(aiai+1 Q −aiai+1) in the
transition probability w(a | b). Using the definition of the time of a transi-
tion we can write the set S(aQ b) for the change aQ b in leading order
perturbation theory

S(aQ b) % UN=2(aiai+1 Q −aiai+1)×UN=2(ajaj+1 Q −ajaj+1)×R
(C2)

Here the N coordinates are located as follows

(xi, xi+1) ¥ UN=2(aiai+1 Q −aiai+1),

(xj, xj+1) ¥ UN=2(ajaj+1 Q −ajaj+1),

(x1, x2,..., xi−1, xi+2,..., xj−1, xj+2,..., xN) ¥ R.

The remainder set R has the volume 1+O(E, d). Using Eq. (C1), the two
factors UN=2(aiai+1 Q −aiai+1) and UN=2(ajaj+1 Q −ajaj+1) in the direct
product in Eq. (C2) give rise to the following factors in the transition
probability w(a | b)

Area(UN=2(aiai+1 Q −aiai+1)) ·Area(UN=2(ajaj Q −ajaj+1))

=w(2)(aiai+1 Q −aiai+1) ·w (2)(ajaj+1 Q −ajaj+1). (C3)

For, according to Eqs. (A20) and (A26) the spin flip probabilities are given
by the area of the transition set. The generalisation of Eq. (C2) to more
than two simultaneous spin flips is straightforward.
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If two neighbouring coordinates x ti , x
t
i+1 do not flip at time t0, we have

the condition

(x t0i , x
t0
i+1) ¨ U

N=2(aiai+1 Q −aiai+1).

This gives rise to a factor ( 1−w (2)(aiai+1 Q −aiai+1)) in the transition
probability w(a | b).7

7 In fact, R gives rise to these factors. However, we do not dwell on this highly technical issue
here.

Now, we would like to show that the canonical distribution of the
Ising Hamiltonian is a stationary distribution of the master equation (8) in
the approximation of perturbation theory. Hence, we demonstrate that the
solution in Eq. (16) satisfies condition (15). For this purpose we analyse the
stochastic dynamics of the CML in the ‘‘defect picture.’’ The defects on the
bonds of the spin chain have been introduced in Section 5. Every change of
spin state aQ b corresponds to a change of the defect state ãQ b̃ on the
bond lattice. There are four types of local defect processes that have been
introduced in the Eqs. (11)–(14). The stationarity condition (15) reads in
the defect picture as follows

C
c̃ ] ã

w(ã | c̃) · p stat
c̃ − C

b̃ ] ã

w(b̃ | ã) · p stat
ã =0. (C4)

The first term in this equation corresponds to the gain for the defect state
ã, the second term corresponds to the loss out of this state. To solve
Eq. (C4) our strategy is to find to each loss term w(b̃ | ã) · p stat

ã a corre-
sponding gain term w(ã | c̃) · p stat

c̃ that cancels this term.
First, we specify the transition probability of a defect change ãQ b̃.

For large system size N simultaneous defect processes have to be taken into
account. The transition probability for a local defect process ãi, ãi+1 Q
b̃i, b̃i+1 that involves two lattice sites in ã is given by w̃(ãi, ãi+1) (cf. Eqs. (11)–
(14)). We can fix the location i of a defect process with the convention that
we take the left site of the two sites that are involved in the process. Hence
in ãQ b̃ defect processes of the type i take place at the locations i ¥ Ji …
{1, 2,..., N}. If we define J :=14

i=1 Ji, at all places i ¥ {1, 2,..., N}0J no
defect process takes place. In analogy to Eq. (9) in the ‘‘spin picture’’ the
transition probability for ãQ b̃ reads

w(b̃ | ã)=D
i ¥ J

w̃(ãi, ãi+1) D
i ¥ {1, 2,...N}0J

(1−w̃(ãi, ãi+1)). (C5)
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For the local transition probabilities w̃(ãi, ãi+1) it holds

w̃(ãi, ãi+1) ¥ {wk, k=1, 2, 3, 4}

where wk denotes the transition probability of the defect process of type k.
As explained in Section 5 these probabilities are related to the transition
probabilities of the spin flips of type (a) and (b) as follows

w1=w2=wa, w3=w4=wb. (C6)

If no defect process takes place at a lattice site i, we have a factor
(1−w̃(ãi, ãi+1)) in Eq. (C5).

With Eq. (C5) we can write a loss term in Eq. (C4) as

−w(b̃ | ã) p stat
ã =−w i1

1 w
i2
2 w

i3
3 w

i4
4 D

i ¥ {1, 2,...N}0J
(1−w̃(ãi, ãi+1)) p

stat
ã . (C7)

Here ik denotes the number of elements in the set Jk, i.e., the number of
defect processes of type k in ãQ b̃. It is important to note that in pertur-
bation theory we only have to take changes of defects ãQ b̃ with

i1+i2+i3+i4 ° 1 (C8)

into account for the master equation (C4). The contribution of ãQ b̃ with
many simultaneous defect processes is strongly suppressed, since each
process gives rise a factor of the order O(E, d) to the transition probability
(cf. Eq. (C5)).

We are now going to construct the starting configuration c̃ for the
counter process c̃Q ã. Figure 9 shows an example of such a construction.

Fig. 9. Here an example of a counter process c̃Q ã to a defect change ãQ b̃ is shown. The
pairs of sites at which defect processes occur are marked by brackets. For the defect state c̃ we
also indicate the step number (1), (2) or (3) of the construction. Of course, in the perturbative
regime the density of defect processes is much lower than in this figure.
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(1) In c̃Q ã the annihilation and creation of two defects is inverted
in comparison to the defect change ãQ b̃. Hence we set

c̃i=b̃i, c̃i+1=b̃i+1, -i ¥ J1 2 J4 .

(2) We choose i2 sites i such that c̃i, c̃i+1 Q ãi, ãi+1 is a defect process
of type 2 (diffusion to the left).

(3) We choose i3 sites i such that c̃i, c̃i+1 Q ãi, ãi+1 is a defect process
of type 3 (diffusion to the right).

(4) For the remaining sites we set c̃i=ãi.

Item (2) and (3) are the reason why the configuration c̃ finally differs from
b̃. To complete the construction the sites mentioned in item (2) and (3)
have to be fixed.

For that purpose consider the whole set P of transitions ãQ s̃ having
a defect process of type 1 (respectively type 4) at i ¥ J1 (respectively i ¥ J4)
and having i2 (respectively i3) processes of type 2 (respectively type 3) at
unspecified lattice sites. Our transition under consideration ãQ b̃ is con-
tained in this set P. On the other hand consider the set Q of counter
processes described above, i.e., the set of all processes ỹQ ã such that a
defect process of type 4 (type 1) occurs at each i ¥ J1 (i ¥ J4) and having i2/3
defect processes of type 2/3 at unspecified lattice sites. Combinatorics
together with the periodic boundary conditions show that P and Q have
the same number of elements. Hence we can uniquely assign a counter
process to each original process. In particular c̃Q ã can be specified
uniquely.

The gain term that results from c̃Q ã in Eq. (C4) is

w(ã | c̃) p stat
c̃ =w i4

1 w
i2
2 w

i3
3 w

i1
4 D

i ¥ {1, 2,..., N}0K
(1−w̃(c̃i, c̃i+1)) p

stat
c̃ . (C9)

Here the set K … {1, 2,..., N} contains the locations at which local defect
processes occur in c̃Q ã. The set K has the same cardinality as the set J for
the defect change ãQ b.

Now we compare in Eqs. (C7) and (C9) the products of the factors
(1−w̃(ãi, ãi+1)) and (1−w̃(c̃i, c̃i+1)), respectively. One can show from the
preceding construction of c̃ that

(1−w̃(ãi, ãi+1)) ] (1−w̃(c̃i, c̃i+1))

holds at less than 2(i1+i4)+6(i2+i3) lattice sites. Because of condition
(C8) that holds in perturbation theory the two products cancel each other
approximately, corrections being of order O(E2, d2, Ed). Besides, the factors

Non-Equilibrium Behaviour in Unidirectionally Coupled Map Lattices 557



w i2
2 w

i3
3 for defect diffusion to the left and right are identical in Eqs. (C7)

and (C9). Therefore, we arrive at the condition

−w i1
1 w

i4
4 p

stat
ã +w i4

1 w
i1
4 p

stat
c̃ =0. (C10)

We can solve this condition with the ansatz

p statc̃ =1w1

w4

2 i1 − i4p stat
ã .

If we compare the number of defects in ã and c̃, it holds

#def(ã)−#def(c̃)=2(i1−i4). (C11)

Since the defect state ã can be taken arbitrary, we arrive at the following
stationary solution of the master equation

p stat
ã =c 1w1

w4

2−#def(ã)/2

=c 1wb

wa

2#def(ã)/2

(C12)

where we have used equation (C6) for the probabilities of defect processes.
c is a normalisation constant for the stationary solution. To express the
stationary solution in the space of corresponding spin states a we note that

#def(ã)=1
2 C

N

i=1
(aiai+1+

1
2).

Therefore the stationary solution for spin states a can be written as

p stat
a =cŒ 1wb

wa

2C
N
i=1 ai ai+1 /4

=
1
Z
exp 1bJ C

N

i=1
aiai+1 2 . (C13)

Hence the stationary solution corresponds to the canonical distribution of
the nearest neighbour Ising model. For the temperature Eq. (C13) implies

bJ=
1
4
ln 1wb

wa

2 . (C14)
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